Interoperability Architecture for Grid Networks
Monitoring Systems

Authors:
Kazimierz Balos', Leszek Bizon', Michal Rozenau', Krzysztof Zielifiski'
! Institute of Computer Science, Academy of Science and Technology in Krakow

ABSTRACT

The aim of this study is to solve the problem of constructing interface of monitoring system
which will be suitable for distributed and heterogeneous environments, especially for clusters
and grid networks, according to OGSA [10] and OGSI [9] specifications. This study looks at
development of scalable and easy to maintain system, that can be used to expose monitored
parameters, like network traffic and nodes’ infrastructure resource availability to outer
applications for further processing. Paper covers topic of interoperability architecture for grid
monitoring systems as hierarchical architecture consisting of cluster level layer, and
interoperability layer for monitoring data interchange using Web Services as universal interface.
Approach shown in this article presents current achievements in the area of using Sun’s early
implementation of Java Management Extensions (JMX™) [5, 6] technology for communication
at cluster level and WS and SOAP protocol for communication at the grid network level. This
also covers a way of dynamic monitored stations registering using an open implementation of
discovery services, which can be used in all environments using Open Source license. Finally,
there are presented results of SOAP Gateway implementation, which can be used for
comparison purposes with other existing interfaces of monitoring systems.

1 Introduction

Article presents general architecture exposing monitored system described in [12]
as a Web Service. WS have been adopted by Global Grid Forum as common interface
used by Grid Services [11] and therefore they used to create the interface for
monitoring service described in this paper. The purpose of this service is to make
available real time monitoring information collected by monitoring infrastructure (in
this case by JIMS - JMX Infrastructure Monitoring System) for cluster online analysis
tools.

Paper presents layer of interoperability that complies to OGSA specification [10],
including technical aspects of accessing all monitored stations in each cluster through
one point of communication. It describes WS interface at one side, for exposing
monitoring system as a Grid Service [9], and appropriate JMX interfaces and
discovery mechanisms for cooperation and resource discovery of monitoring system at
the other side.

In Section 2 functional requirements and SOAP Gateway concept is presented.
The idea of interoperability architecture and discovery mechanisms are described.
Technical aspects of interoperability layer, design and implementation, are discussed
in Section 3. In the end there are shown results of performance evaluation of presented
system, including its scalability and behavior in multithreaded environment (Section
4). There will be also discussed advantages and disadvantages of proposed solution.

2 Functional requirements and SOAP Gateway concept

SOAP Gateway (SG) concept is based on general approach described in OGSI
(Open Grid Services Infrastructure) specification [9], where grid service is a WS
defined using WSDL (Web Service Definition Language), conforming to a set of
conventions (interfaces and behaviors) that define how clients and services interact.
SG concept bases also on architectural approach taken from OGSA (Open Grid
Services Architecture). According to OGSA, grid service should define following
points of cooperation with outer application [10, 11]:

a. Grid Service Reference (GSR), which is a WSDL document that describes

how to communicate with the grid service,

b. Grid Service Handle (GSH) — a globally unique URL uniquely identifying the

instance for all time.

As any other grid service, layer of interoperability for infrastructure monitoring
system should support transient service instances, created and destroyed dynamically,
and give unified way to access all monitored resources. WS allow to hide complexity
of managing monitored stations and exposes one, consistent with other grid services,
interface. Because clusters in grids consist of many monitored computing elements,
interoperability layer should also perform a role of router, forwarding requests from
one outer point of communication to specified node. To achieve this goal it should
store addresses of all available monitored stations. In big installations, where there are
tens of nodes, administrative way of assigning RMI address of each monitored station
in SG would be ineffective. To solve the problem of registering new stations
appearing in cluster, as well as deleting from registry inactive ones, there is used
special mechanism of active stations discovery. Proposed interoperability layer
consists of one SOAP Gateway per cluster. In some cases SG-s can be doubled for
fail-over facility.

SG resides in environment where there are used different protocols, i.e. SOAP at
the client side, and RMI at the side of monitored stations. Because of this, it should
perform a role of translator, connecting itself to monitored nodes through RMI
connectors and with client applications through WS. To sum up, there can be specified
following requirements for such interoperable gateway:

a. automatic installation to facilitate management of numerous nodes in clusters,

b. automatic configuration with dynamic discovery mechanisms for finding

monitored stations that are currently available and heart beat mechanism for
removing stations that do not operate properly and are not responding for a
certain period of time,

c. hiding self adaptation mechanism (dynamic discovery and heart beat) from

the user,

d. exposing one point of communication through one - due to firewalling - well

defined application address and port, with WSDL describing its functionality,

e. forwarding requests from WS clients to specified monitored stations.

Pictures below compare monitored data access by one client application through RMI
and through SOAP Gateway facility.

GRID NETWORK CLIENT APPLICATION

RMI CLIENT

N4 DRE

JIMS — JMX Infrastructure
Monitoring System

WORKER NODE - cluster
computing element

CLIENT LAYER

DOMAIN NODE - cluster
user interface

RMI
CLUSTER

me) [|| me) | [mws | owe

WORKER NODE WORKER NODE WORKER NODE WORKER NODE WORKER NODE WORKER NODE

LAN NETWORK LAYER

Fig 1: Direct access to each JIMS instance through RMI

CLIENT APPLICATION
GRID NETWORK

JIMS — JMX Infrastructure B
Monitoring System

WORKER NODE - cluster
computing element
DOMAIN NODE - cluster
user interface
S0AP SOAP

CLUSTER CLUSTER
SOAP SOAP
ATEWAY GATEWAY
DOMAIN NODE DOMAIN NODE

INTEROPERABILITY LAYER CLIENT LAYER

WORKER NODE WORKER NODE WORKER NODE WORKER NODE WORKER NODE WORKER NODE

Fig 2: SOAP Gateway concept and its place in interoperability layer

Presented system exposes parameters of monitored stations through WS, performs
a role of gateway, manages appearing active stations, maintaining a table of all active
monitored stations in the cluster. This dynamic registry configuration mechanism is
based on ActiveDiscovery and HeartBeat mechanisms from JDMK — commercial
package from SUN for remote MBean servers management. Developed system has all
mechanisms found in JDMK, but is based on open implementation of IMX from Sun
Microsystems (JMX RI and JIMX RI Remote API Early Access 2) [5,6].

3 Design and implementation

SG is a web service running in context of WS container. As WS container it was
chosen WASP (Web Applications and Services Platform) from Systinet company,
which is designing WS containers for applications written in Java and C++ [8]. WASP
server scales very well in multithreaded environment, where many concurrent clients
accesses the same web service [1]. Besides, WASP was chosen because it’s free for
stations having one processor. It is not an issue, because WASP server doesn’t have to
be deployed exactly in cluster — it can be deployed in any station which has free
access, it means not firewalled for RMI communication, to all monitored stations.

SOAP GATEWAY MONITORED STATION

SOAP GATEWAY WEB SERVICE EMBEDDED MBEAN SERVER REMOTE MBEAN SERVER
FBEAN SERVERS
<& DISCOVERY CLIENT DISCOVERY RESPONDER
-~ (ACTIVE DISCOVERY) (ACTIVE DISCOVERY)

\CTIVE DISCOVERY
HREAD

SYSTEM INFORMATION
‘ MBEAN

SOAP GATEWAY SERIALIZER

SNMP MONITOR
SYSTINET WASP SERVER (WEB SERVICES CONTAINER MBEAN

Fig 3: SOAP Gateway design, Web Services container and Active Discovery

Among the others, SG consists of following modules:

e sg - WS module with MBean Server Manager, which holds registry of JMX
addresses of all monitored stations,

e discovery — active discovery library,

e serializer — module for serialization of objects that do not have default
constructor,

e jims — monitored station providing monitored infrastructure information,

e snmp — module providing network information through SNMP.

SG autoconfiguration is based on two mechanisms: dynamic discovery and heart
beat. First mechanism uses Discovery Monitors at the side of SG and Discovery
Responders in monitored stations in order to provide Active Discovery like it is in
JDMK [13]. SG periodically sends multicast requests to all monitored stations, and
then they respond with theirs RMI addresses of JMX connectors. The second
mechanism, heart beat, is a complementary process to discovery mechanism and is
used for finding monitored stations that do not respond for some reasons. If a station is
not responding certain number of times, it is removed from SG registry and not
available anymore. For this purpose each station registered in SG has its own counter
of retries which is started after first access failure.

As it can be expected, SG requires very little logic on the client side of
application, because whole logic can be hidden behind the interoperability layer. It
encapsulates all complexity of discovery and heart beat mechanisms, as well as other
— not mentioned here — mechanisms of dynamic applets loading to MBean servers in
monitored stations. The advantage of using SG as the point of monitored data access
is location transparency of managed nodes. Each change of monitoring station
(vanishing or changing JMX RMI address — due to MBean server restart or physical
crash) is handled by SOAP Gateway, so the client4 application each time obtains
proper list of valid and active servers.

Another problem is the security of the proposed solution. However, it is clear that
even without any dedicated authorization mechanism it is more secure than system
where client connects directly to each node. WASP architecture is based on
interceptors concept, which can be used for authentication and authorization
mechanisms by adding helper web services for intercepting HTTP requests and
processing them according to security policy set in SG. The same mechanism could be
used for SOAP envelopes encryption. In presented form SG runs without any

encryption, but using the same mechanism — interceptors — it can be equipped with
encrypting interceptor, which would handle every HTTP request on the server side,
encrypt before sending it to client and decrypt after receiving from client. Interceptors
cannot be used for network traffic encryption at cluster level, because they operate
only at WS side of SG. At the side of RMI connectors there should be used other
security mechanism as SSL for RMI connections or TLS and SASL for JMXMP
connectors [6].

4 Performance

To evaluate whether SG strongly affects performance of the whole grid monitoring
system there was performed substantial number of tests. There is possibility to see
how text protocol is scaling with increasing amount of data, number of repetitions and
concurrent threads. It is also possible to see how monitoring data traffic affects
monitored stations and theirs CPUs and CPUs of domain node, where SOAP Gateway
is typically deployed.

It is assumed that SG works permanently, listening to incoming requests and
delivering required system and network information data. Because grid infrastructure
monitored data are rather static and not changing very fast and the most changeable
properties, including CPUs load, are changing about once a minute, so SG usage
pattern can follow sequential access rule, where all parameters are accessed
periodically. In this case monitored stations parameters are collected in turn from each
monitored station in the cluster, so operation of the whole monitoring system imposes
periodical and constant but not heavy load to all monitored nodes. In this situation it is
essential to test not only raw data access time to each monitored station, but also to
examine influence of SG on monitored cluster and monitored stations. Although this
is not required, it is also necessary to monitor load of domain node, where WS
container with SG facility is deployed. In proposed interoperability architecture of
monitored system SG can become a bottleneck, so it should be tested against the load
caused by many concurrent connections. To sum up, performance tests should:

e identify and measure possible system overheads,

e provide information about worker nodes CPUs load during performance
tests besides simple data access time,

e cvaluate domain node CPUs usage during performance tests to show
how SOAP Gateway is performing in distributed and multithreaded
environment.

Considering above objectives [3] there have been developed test scenario
including procedures as follows:

e monitored data access time for fixed amount of data for each node,

e repeated data access time for fixed amount of data, against worker nodes
and domain node CPUs load,

e data access time for growing amount of data against all nodes CPUs
usage,

e monitored data access time for growing number of executing threads
operating on different nodes or on one node, against all nodes CPUs
usage, focusing on worker node CPUs usage.

The last but not least aspect of following tests is comparing MBean servers access
times through SG vs. RML. It is clear, that SG increases MBean servers access time,

what was discussed earlier in this paragraph. Important thing is how much SG
functionality affects performance of the whole system in order to decide whether it’s
worth to create the layer of interoperability in existing system monitoring architecture.

First scenario depicted in Fig. 4 shows access time to all monitored stations, while
polling them sequentially and requesting full set of the monitored parameters. Charts
show that all measured times (average of 100 performed tests) are always below 100
[ms], including overhead caused by SG (bigger values), which seems to be small
enough comparing to direct access through RMI.

GLIENT LAYER

INTEROPERABILITY LAYER

LAN NETWORK LAYER

Access time through RMI and SOAP

600 :

T
RMI

o
i S08P
e 508 |- 1
e~ —
WORKER NODE 400 - b
JEp—— o
e i a0 | |
DOMAIN NODE 200 - -
e
100 -
o ! : : : : : :
@ 2 4 6 8 1@ 12 14

MBeanServer Id

Fig 4: Scenario nr 1: sequential access time to each MBean server in cluster

In scenario number 2 and 3 shown in Fig. 5 and 6 respectively, there were
performed tests of MBean servers’ access times against the number of requests and
number of attributes. There is about 100% overhead of access time through SG in
comparison to RMI access.

CLIENT LAYER INTEROPERABILITY LAYER LAN NETWORK LAYER Average access time repeated 1 to 100 time

5000 T T T T
JIMS ~ JMX Infrastructure CLUSTER RMI
Monitarng System | 4500 | SOAP b
WORKER NODE - clustor WORKER NODE
computing olement 4000 q
DOMAIN NODE - clustor
] - 1
WORKER NODE
CLENT PPLICATION 3 4 400 e - seea - i
F P r ol]
sonp WORKER NODE =
LiENT OAP GATEWAY RMI 2000 B
x1..100
DOMAN NODE 1580 F -
1600 - 7
500 - 7
2 I I I I
[} 2o 40 60 80 100

Repeat

Fig 5: Scenario nr 2: repeating tests from 0 to 100 times with fixed amount of data

CLIENT LAYER

INTEROPERABILITY LAYER

LAN NETWORK LAYER

Average access time for growing attributes cc

cu : : : .
| 1400 KM B
'WORKER NODE S0AP
) e |
— Looo L]
L aprLcATON
4,...28 LD s b
.
@UWGMEWAV S0AP AP GATEWAY | rwi WORKER NODE 5
1....28 attributes | ;ouannooe

WORKER NODE
WORKER NODE

2] 5 10 15 20 25

Repeat

Fig 6: Scenario nr 3: growing amount of data, number of attributes from 1 to 28

More complex tests were performed to check SG operation when many clients
concurrently are requesting monitored data from different MBean servers or the same
MBean server (the worst case). Experimental results presented in Fig. 7 and 8§
illustrate that providing SG neither introduce significant overhead (even during
accessing the same monitored station) nor became a bottleneck, what could be
expected considering its role as gateway.

CLIENT LAYER INTEROPERABILITY LAYER LAN NETWORK LAYER Multithreaded tests mesaured for the first MBean
600 T T T T T T
=] sop

WORKER NODE S

yi*T]

WORKER NODE 400 + B

WORKER NODE
WORKER NODE
WORKER NODE

Fig 7: Scenario nr 4: multithreaded tests, access time for the first MBean server

MS - JMX Infrastructure cLUsTER
g Syster

DOMAIN NODE - cluster
userinterface

CLIENT APPLICATION

300 B

[ms]

200 - B

2 1 L I I I I I
[} 2 4 6 8 10 12 14

Number of threads

cuewT Laver NTERGPERABLITY LATER LA NETWORK LAYER Multithreaded tests mesaured for the first MBean
€006 T T T T T T
] RiI

A SOAP
,;; WORKER NODE sao L i
//
_ / WORKER NODE 400 - i

JIMS — JMX Infrastructure cLUsTER
Monitoring System

WORKER NODE —.
computing ol

Cms]

[orrsamnAT
DOMAN NoDE
= 200 - J
WORKER NODE
- 4] 1 L 1 L L L I

%) 2 4 6 8 10 12 14
Number of threads

Fig 8: Scenario nr 5: Growing count of threads operating on the same MBean
server

During tests there were observed following system behaviour:

1. long time of making HTTP connection to SOAP Gateway (taking about 2

seconds), what was not shown in charts, but will be discussed below,

2. substantial first MBean server access time (always the biggest).
Problem with long time taken to create HTTP connection to SOAP Gateway was
solved by proper usage of Service-Locator pattern [7], requiring client application to
cache reference to SOAP Gateway for further usage. The second problem was solved
by earlier gathering MBeanInfo information causing to “pre-cache” dynamic MBeans
in given MBean server. Presented pictures don’t show these issues, because there were
applied all rules mentioned above, as using Service Locator pattern in testing software
and obtaining MBeanInfo from MBeans before their access operation.

Besides the performance tests, SOAP Gateway passed also a long term test,
because it has been running for months without a failure, proving that used Sun’s
early access JMX Reference Implementation and its Remote API is reliable enough to

use in current and future implementations of similar projects. In contrast to JIRO
technology used in early stage of this project [12], which was theoretically more
powerful API for monitored systems implementations and which has been abandoned
since some time, JMX is still evolving (its specification is still in progress) and allows
to expect that it will be trustworthy successor of JIRO.

5 Conclusion

Presented architecture and experiments prove that idea of exposing functionality of
grid infrastructure monitoring system through WS is very satisfactory and efficient as
well as provides required level of interoperability. Using WS does not degrade system
functionality, supporting in addition its full openness in scope of cooperation with
other systems. The presented concept of the monitoring system access can be easily
generalized in order to provide access to other system functionality, as its
configuration and management. The described architecture and technology may be
also easily extended with security functionality.

Acknowledgements

Presented monitoring system (JIMS) is a part of European CrossGrid project. All
tests were performed on real cluster situated in ACK Cyfronet AGH in Krakow.

References

1. Bizon L., Rozenau M. 2003, Zastosowanie Web Services w integracji systemow
informatycznych, M.A. thesis, Krakow

2. Visible Progress Technologies, Software Performance Testing Considerations,
http://www.visibleprogress.com/software performance testing.htm

3. Bailey D. 2001, Performance Metrics: Out of the Dark Ages, Berkeley Lab

4. JungJ. 2003, Grid Network Monitoring, Multimedia Networking Laboratories, Hanyang
University, KRnet

5. Sun Microsystems, JMX RI v1.2, http://java.sun.com/products/JavaManagement/

6. Sun Microsystems, JMX Remote API Specification,
http://developer.java.sun.com/developer/earlyAccess/jmx/

7. Sun Microsystems, J2EE Core Patterns,
http://java.sun.com/blueprints/corej2eepatterns/Patterns

8. Systinet, WASP 4.6 White Paper, WASP 4.6 Product Datasheet, http://www.systinet.com

9. Open Grid Services Infrastructure (OGSI) Specification, v 1.0, http://www.ggf.org/ogsi-wg

10. Open Grid Services Architecture, Globus Tutorial, Argonne National Laboratory,
http://www.globus.org

11. F. Berman, G. Fox, T. Hey, Grid Computing, Making the Global Infrastructure a
Reality, Wiley 2003

12. S. Zielinski, Jiro Based Infrastructure Monitoring System, CrossGrid deliverable,
CG-3.3.3-CYF-D3.3-v1.1-JIRO.doc

13. Sun Microsystems, JDMK, http://java.sun.com/products/jdmk

	Interoperability Architecture for Grid Networks Monitoring Systems
	ABSTRACT

